Орган зрения у рыб особенности строения. Органы чувств рыб в пищевом поведении рыб


2007-02-27 19:52:08

ЧТО НУЖНО ЗНАТЬ РЫБОЛОВУ О ЧУВСТВАХ РЫБ?

1. Зрение пресноводных рыб

Стопроцентной уверенности в том, как именно протекает жизнь под поверхностью воды, у нас нет. О том, как реагирует та или иная рыба на различные раздражители, каким образом она отыскивает приманку и что останавливает ее от решительной поклевки, мы судим косвенно - по результатам рыбалки, наличию-отсутствию «хваток» и сходов и т. д., и т. п....

Для того, чтобы эффективно применять свой рыболовный опыт в противостоянии с обитателями наших водоемов, современный рыболов- любитель или спортсмен обязан обладать немалым багажом знаний, полученных благодаря неоднократным личным наблюдениям или почерпнутых из достоверных научных источников.

В настоящей статье мы продолжаем разговор об органах чувств рыб и их неравнозначной роли в жизни подводных обитателей (см. «СР» №№ 2 и 8 за 2002 г., № 2 за 2003 г. и № 2 за 2004 г.).

Об органах чувств рыб

В истории развития человеческой цивилизации особое внимание изучению рыб начали уделять в IV веке до н. э. Фактически ихтиология как наука о рыбах началась с Аристотеля (384-322 гг до н. э.), который сделал первые попытки классифицировать огромное разнообразие обитателей царства Нептуна и описывал биологию и анатомию многих видов рыб.

За две с половиной тысячи лет рыб изучили достаточно подробно, но естествоиспытатели II-XIX-го веков, описывающие в своих научных трудах подводных жителей рек, морей и океанов, были искренне уверены в том, что рыбы - это очень примитивные, глупые существа, которые не обладают ни слухом, ни осязанием, ни даже какой-либо памятью.

Кстати, эти, в корне неверные, воззрения сохранялись в научной среде вплоть до 1940-х годов.

В настоящее время практически любой «литературно подкованный» рыболов, не говоря уже об ученых-ихтиологах, знает, для чего у рыб существует боковая линия, могут ли рыбы слышать или обонять, с помощью чего они отыскивают корм или чувствуют приближение хищника...

Общеизвестно, что органы чувств или, как принято их сейчас называть - сенсорные системы , дают возможность живому организму воспринимать разнообразную информацию об окружающем мире, а также сигнализировать о внутреннем состоянии самого организма.

Органы чувств рыб способны:

Воспринимать электромагнитные поля в видимой (зрение ) и инфракрасной (температурная чувствительность ) областях спектра;

Ощущать механические возмущения, или звуковые волны (слух ),

Чувствовать силу тяжести (вестибулярная и гравитационная чувствительность ) и механическое давление (осязание );

Распознавать разнообразные химические сигналы - восприятие веществ в жидкой фазе (вкус ) и в газовой фазе (обоняние ).

К сенсорным системам рыб можно отнести зрительную, слуховую, вкусовую, обонятельную, осязательную, электрорецепторную сенсорные системы, а также сейсмосенсорную систему, представленную боковой линией, общее химическое чувство.

К одним из самых значимых органов чувств у животных относится зрение - это способность воспринимать электромагнитные поля в видимой области спектра.

При помощи зрительных анализаторов рыбы ориентируются в пространстве, находят пищу или избегают хищников, занимают соответствующие экологические ниши, визуально оценивая характер зрительного окружения (Beur, Heuts, 1973).

Популярно о строении глаза рыб

Рыбы видят (воспринимают свет) в водной среде при помощи глаз и особых светочувствительных почек. Особенности видения рыб под водой обусловлены прозрачностью вод, их вязкостью и плотностью, глубиной, скоростями течений, способом жизни и питания.

По сравнению с наземными животными и человеком, рыбы более близоруки. Роговица их глаз плоская, а хрусталик шаровидный. Именно его форма и обуславливает близорукость у рыб. У многих рыб хрусталик может выступать из отверстия зрачка, благодаря чему увеличивается поле зрения.

Вещество хрусталика такой же плотности как и вода, в результате свет, проходя через него, не преломляется и на сетчатке глаза получается четкое изображение.

Сетчатка глаза (внутренняя оболочка) имеет сложное строение, состоит из четырех слоев: пигментного, светочувствительного (так называемые палочки и колбочки ) и двух слоев нервных клеток, дающих начало зрительному нерву.

Роль палочек - функционирование в сумерках и ночью, причем они нечувствительны к цвету. При помощи колбочек рыбы воспринимают различные цвета.

Зрачок практически у всех видов неподвижен, однако камбалы, речной угорь, акулы и скаты в состоянии его сужать и расширять, увеличивая остроту зрения.

Особенности зрения у разных рыб

У большинства рыб движения глаз скоординированы, только у некоторых (зеленушка, калкан, морской язык и др.) они могут двигаться независимо друг от друга. У хищных рыб глаза наиболее подвижны.

У наших морских и пресноводных рыб органы зрения - глаза - расположены по бокам головы, причем каждый глаз видит свое поле зрения. Такое зрение называется монокулярным . Спереди монокулярное зрение каждого глаза перекрывается, появляется зона бинокулярного зрения . Угол бинокулярного зрения у рыб очень мал - не более 30º.

Известный американский ученый Роберт Вуд показал, как рыбы могут видеть из воды. По законам преломления световых лучей, предметы, находящиеся на суше, кажутся рыбе выше, чем на самом деле. Если смотреть из воды в сторону берега под углом к вертикали больше чем 45°, то из-за полного внутреннего отражения от поверхности воды наблюдателю (рыбе) становятся видны объекты (рыболов). Стоящий на берегу рыболов представляется ей висящим в воздухе и четко различимым, но сидящего человека рыба не заметит, так как под малым углом наклона лучей к горизонту (менее 45º) наземные объекты ей невидимы.

Подавляющее большинство пресноводных рыб видят максимум на 1 м. В прозрачной воде (например, в наших водохранилищах зимой) рыбы практически могут видеть на расстоянии 10-12 м, однако четко различают предметы, их форму, цвет в пределах 1-1,5 м. При аккомодации глаза с передвижением хрусталика глаз настраивается на расстояние, не превышающее 15 метров. Это предел дальности зрения рыб.

Согласно экспериментальным исследованиям, речной окунь в состоянии видеть предмет величиной 1 см на расстоянии около 5,5 метров. При уменьшении размеров предмета в 10 раз расстояние видения его хищником пропорционально уменьшалось - окунь видел предмет за 55 см. Крохотный объект величиной 0,1 мм хищник видел только за 5,5 см.

Ихтиологи различают светолюбивых (дневных) и сумеречных рыб. У дневных видов в сетчатке глаза палочек немного, зато колбочки большие. Эти рыбы (щука, плотва, голавль, жерех и др.) хорошо различают цвета - красный, синий, желтый, белый. У сумеречных рыб (судак, налим, сом,) в сетчатке находятся только палочки, и, следовательно, различать цвета и их оттенки они не в состоянии.

Глаза как орган зрения хорошо развиты у светолюбивых рыб (щука, чехонь, красноперка) и некоторых сумеречных видов (лещ, ерш, густера, налим). У других сумеречных рыб (придонных) - карпа, карася и линя - глаза развиты хуже (Протасов, 1968). В связи с этим у светолюбивых рыб ориентация и поиск в пространстве, питание могут осуществляться преимущественно с помощью зрения, а у сумеречных - главным образом благодаря органам осязания и других сенсорных систем.

У пелагических планктофагов (белый толстолобик, чехонь) поиск пищи осуществляется практически полностью благодаря зрению.

Способность рыб различать цвета. Дневные рыбы достаточно хорошо различают цвета, по крайней мере, спиннингисты об этом знают, применяя при разной освещенности белый виброхвост или бело-красный твистер в охоте на щуку или окуня. Черноморская хамса на фоне сине-зеленой воды различает (видит) сети разной окраски на следующем расстоянии: сине-зеленые - 0,5-0,7 метров; темно-синие - 0,8-1,2 м; темно-коричневые - 1,3-1,5 м; серые или черные - 1,5-2,0 м; белые (неокрашенные) - 2,0-2,5 м.

Сумеречные и ночные рыбы, как было отмечено выше, различать цвета не в состоянии, поэтому рыболовы-спортсмены и любители при экспериментировании с приманками должны уделять особое внимание не цвету приманки, а ее поведению (лобовому сопротивлению, шумовым характеристикам).

Применение специально ярко окрашенных приманок для ловли сумеречных хищников (тех же судака или сома) автору представляется неоправданным, так как эта рыба реагирует не на цвет некоего «Предатора», а только на его гидродинамические качества, корректируя предстоящий бросок видением (благодаря отличному сумеречному - черно-белому - зрению) абриса приманки. Причем чем ярче ее силуэт на фоне усеянного камнями дна (белое- на черном , флуоресцентное на черном ), тем бóльшее количество хваток и поимок хищника отметит спиннингист при применении одинаковых приманок, но разных расцветок. И снова решающее для броска судака значение будет иметь белый или желтый цвет приманки, а уж никак не фиолетовые, например, разводы на зеленом фоне воблера (если, конечно, это не супернеотразимая, гремяще-звенящая модель)...

Зрительное восприятие рыбами движений. Российские ученые исследовали способности зрительного аппарата рыб восприятия движения. Для этого наблюдали за оптомоторной реакцией рыб на последовательно движущиеся полосы или детали обстановки в течение 1 секунды (определение величины оптических моментов ). Были получены следующие результаты.

Оптический момент у верховки и карася составил 1/14 - 1/18 секунды, щуки и линя - 1/25 - 1/28 с, леща и окуня - 1/55 с. Рыбы, имеющие оптические моменты от 1/50 до 1/67 с, способны вдвое детальнее воспринимать одно и то же движение, чем человек, а рыбы, имеющие оптический момент 1/10 - 1/14, - вдвое менее детально.

Тонкое восприятие движения зрительным аппаратом рыб позволяет жертвам уловить начальный момент броска и ускользнуть от хищника. Для мирных рыб сигналом предстоящего броска хищника являются подергивание и вибрирование спинных и грудных плавников, а также всего тела охотника, улавливаемые глазом потенциальной жертвы (Протасов, 1968).

Сытые и утомленные рыбы имеют слабо выраженную оптомоторную реакцию (реакцию на движение), а голодные и хорошо отдохнувшие - сильно выраженную реакцию.

Органы чувств рыб в пищевом поведении рыб

Представляют интерес для рыболова также и экспериментально полученные и проверенные в естественных условиях результаты поочередного функционирования органов чувств рыб при поиске ими кормовых объектов.

Во время «свободного поиска», когда расстояние до кормового объекта превышает 100 м, у рыб «работает» только обоняние , остальные сенсорные системы не задействованы. При приближении к источнику «вкусного» запаха от 100 до 25 м к обонянию подключается слух . На расстоянии 255 м рыба пытается найти корм при помощи обоняния , зрения и слуха .

Когда до пищи остается «рукой подать» (51 м), рыба в первую очередь пользуется зрением , затем обонянием и слухом . На расстоянии 10,25 м в поиск вовлекаются одновременно зрение, слух, боковая линия, обоняние, наружная вкусовая чувствительность (ощупывание грунта усиками, касания губами, рылом, даже плавниками).

Когда еда «под носом» и расстояние до нее не превышает 0,25 м, рыба «включает» практически все органы чувств: зрение, боковую линию, электрорецепцию, наружную вкусовую чувствительность, общее химическое чувство, осязание. Их совместная работа быстро приводит к обнаружению рыбой корма.

Поведение хищных рыб в зависимости от особенностей зрения

По отношению к периоду наибольшей пищевой активности применяют такое разделение хищных рыб: окунь - сумеречно-дневной хищник, щука - сумеречный, судак - глубокосумеречный.

Окуни-ихтиофаги и щуки питаются круглосуточно: днем охотятся за добычей из засады, в сумерках и на рассвете выходят на открытую воду и преследуют жертв. «Сумеречное» питание хищников происходит при освещенности от сотен до десятых долей люксов (вечером) и наоборот (утром). В этот период у окуня и щуки функционирует дневное зрение с максимальной остротой и дальностью видения, а плотные стаи рыб-жертв начинают распадаться, обеспечивая удачную охоту хищникам. С наступлением темноты отдельные рыбешки рассредоточиваются по акватории, верховка и уклейка при падении освещенности ниже 0,01 лк опускаются на дно и замирают. Охота хищных рыб прекращается.

В предутренние часы при освещенности от десятых долей до сотен люксов «избиение младенцев» продолжается до момента, когда рыбы-жертвы образуют плотные оборонительные стаи.

Согласно исследованиям ихтиологов, летом продолжительность утреннего питания хищников достигала 3 часов, вечернего - 4 часа и ночного (судак) - 5-6 часов.

Судак может пользоваться зрением в тех условиях, когда другие рыбы видеть не могут. Сетчатка глаза хищника содержит сильно отражающий свет пигмент - гуанин, который увеличивает ее чувствительность. Охота судака за мелкими стайными рыбами наиболее успешна при глубоко сумеречной освещенности - 0,001 и 0,0001 лк.

Осенью, в пасмурную и дождливую погоду, когда освещенность изменяется незначительно, молодь мирных рыб образует разреженные оборонительные стаи и хищники могут успешно охотиться на протяжении всего дня, а не только в сумерках. Происходит так называемый «осенний жор» хищника.

Подмечена интересная особенность охоты щуки и окуня на свету и при высокой прозрачности воды. В дневное время эти рыбы выступают как типичные хищники-засадчики: при неудачном захвате добычи из засады они не преследуют ее, чтобы не отпугнуть других потенциальных жертв от места охоты. Те районы, где затаился хищник, обнаруживший азартом свое место укрытия, стайки рыб обходят стороной. Поэтому днем щука или окунь делают четко выверенный и точный бросок только при возможности 100%-го захвата добычи. Решающую роль в удачном броске играет зрение.

Таким образом, зная об особенностях и возможностях зрительного восприятия рыб, рыболовы получают возможность осуществлять на водоеме целенаправленный поиск будущего подводного «спарринг-партнера». Знание сильных и слабых сторон противника (читай - возможностей зрения рыб в морской и пресной воде, днем и в сумерках ), надеюсь, помогут многочисленным поклонникам рыбной ловли выходить победителем из этой увлекательнейшей и честной схватки...

Представители костных рыб имеют костный или костно-хрящевый скелет. По старой систематике костных рыб выделяли в ранге класса, в котором было четыре подкласса: хрящекостные (осетровые), лучеперые (подавляющее большинство рыб), двоякодышащие (протоптерус), кистеперые (латимерия). По новой систематике костные рыбы - это группа, включающая два класса: лучеперые и лопастеперые рыбы.

Костные рыбы появились приблизительно в девоне. На сегодняшний день их около 30 тысяч видов.

Рыбы в процессе эволюции обзавелись множеством прогрессивных черт строения, которые позволили им приспособиться к разнообразным условиям водной жизни, а следовательно, рыбы многообразны по условиям жизни и форме тела.

Кожа костных рыб

Наружный покров рыб образует эпидермис (многослойный эпителий) и дерма (соединительная ткань). В эпидермисе есть железы, выделяющие слизь, которая уменьшает трение тела о воду при движении рыбы.

Чешуя костная. Это отличает костных рыб от хрящевых, у которых чешуя плакоидная (имеет иное происхождение и строение).

В коже рыб есть пигментные клетки, обуславливающие окраску тела. Некоторые виды рыб могут менять свою окраску, приспосабливаясь к окружающему фону.

Скелет рыбы

Скелет рыб составляет позвоночник, мозговой череп, висцеральный скелет, скелет парных конечностей и их поясов.

Также как у хрящевых у костных рыб позвоночник делится на туловищный и хвостовой отделы.

От поперечных отростков тел позвонков отходят ребра. Ребра оканчиваются свободно, они служат защитой внутренним органам.

Лучи парных плавников костные, соединены с костями поясов конечностей. Плавник движется относительно своего пояса как единый рычаг. Пояса конечностей костной рыбы лежат в мягких тканях свободно.

Мышечная система сохраняет метамерное строение, однако более сложное, чем у хрящевых рыб. Мышцы крепятся к костям скелета.

Плавают рыбы за счет движения хвостового плавника. Парные конечности - грудные и брюшные плавники - выполняют функцию рулей глубины.

Нервная система и органы чувств рыб

Спинной мозг рыб находится в канале, образованном верхними дугами позвонков. Таким образом спинной мозг хорошо защищен.

Головной мозг защищен черепной коробкой и состоит из пяти отделов: переднего мозга с обонятельными долями, промежуточного и среднего мозга, мозжечка, продолговатого мозга. Наиболее развиты у костных рыб мозжечок и средний мозг. Первый отвечает за координацию движений, а во втором находятся зрительные центры.

В глазах находится шаровидный хрусталик, роговица утолщена. Аккомодация достигается за счет движения хрусталика, а не изменения его формы (как, скажем, у млекопитающих). Рыбы видят в даль обычно до 15 м, т. е. их хрусталик приспособлен для зрения на близком расстоянии. Такое приспособление зрения в процессе эволюции обусловлено низкой прозрачностью воды. Глаза имеют веки.

Ноздри ведут в замкнутые обонятельные мешки. Там расположены обонятельные рецепторы.

Хорошо развиты органы химического чувства (обоняния и вкуса). Вкусовые почки у костных рыб находятся не только в ротовой полости, но и в различных местах кожи тела.

Орган слуха и равновесия состоит из внутреннего уха, включающего три полукружных канала (орган равновесия), и полого мешочка, который воспринимает звуковые колебания. Благодаря плотности воды звуковые волны передаются через кости черепа и достигают органов слуха (другими словами, во внешнем отверстии нет необходимости). Рыбы могут издавать звуки (скрип, щелчки). Такие звуки выполняют роль сигналов при поиске пищи и во время размножения. Звуки издаются с помощью трения зубов, костей, при изменении объема плавательного пузыря.

Осязательные клетки у рыб расположены по всей поверхности тела.

Орган боковой линии

У рыб имеется уникальный орган боковой линии. Он состоит из чувствительных клеток, которые расположены на дне желобков или в каналах на теле рыбы. Эти каналы или желобки имеют отверстия во внешнюю среду. Чувствительные клетки органа боковой линии имеют реснички. Каналы тянутся по обеим сторонам всего тела рыбы.

Функция органа боковой линии - это восприятие колебаний воды. С помощью боковой линии рыбы определяют скорость и направление течения, наличие предметов рядом и даже колебания напряженности магнитных и электрических полей.

Пищеварительная система рыб

В ротовой полости костных рыб имеются недифференцированные зубы. Зубы могут находиться не только на челюстных, но и небных и некоторых других костях. Зубы рыб выполняют лишь функции захвата и удержания добычи, но не измельчают еду. Рыбы просто заглатывают пищу. Слюнных желез у них нет.

За ротовой полостью идет глотка и пищевод, открывающийся в желудок. Желудочный сок содержит соляную кислоту и пепсин, которые частично расщепляют пищу. Дальнейшее переваривание происходит в кишечнике с помощью секретов печени и поджелудочной железы. У растительноядных видов костных рыб в кишечнике обитают симбиотические простейшие и бактерии, которые выделяют ферменты, способствующие перевариванию пищи.

Мальки рыб питаются планктоном. Пища взрослых костных рыб разнообразна, многие всеядны.

Плавательный пузырь

Плавательный пузырь в процессе эмбрионального развития костной рыбы образуется как вырост на спинной стороне кишки в области будущего пищевода. У ряда рыб пищевод и плавательных пузырь сохраняют сообщение между собой и во взрослом состоянии.

Плавательный пузырь, выполняя функцию гидростатического органа, позволяет костным рыбам находиться наплаву без всяких мышечных усилий. Это происходит за счет изменения объема газов в пузыре. Кровь капилляров стенок пузыря поглощает из него или выделяет в него газ. Когда пузырь увеличивается, общая плотность рыбы уменьшается, и она всплывает.

У всех хрящевых рыб плавательного пузыря нет. Среди костных рыб его нет у скумбриевых и многих донных видов.

Кроме своей основной функции, плавательный пузырь частично участвует в дыхании.

Дыхательная система костных рыб

У костных рыб от 5 до 7 пар жаберных щелей, поддерживаемых жаберными дугами и прикрытых с каждой стороны одной жаберной крышкой.

В процессе эмбрионального развития жаберные отверстия образуются в переднем отделе пищеварительной трубки.

На жаберных дугах расположены жаберные лепестки, в которых находится густая сеть мелких капилляров. Здесь происходит газообмен.

Движение воды и омывание жаберных лепестков обеспечивается движениями рта и жаберных крышек. Костные рыбы засасывают воду через рот и на выдохе прогоняют ее через жаберные щели. При этом вода омывает жаберные лепестки.

Кроме дыхания жабрами ряд рыб частично осуществляют газообмен с помощью кожи. Также могут заглатывать воздух, в этом случае кислород всасывается кишечником.

Кровеносная система рыб

Сердце рыб двухкамерное (одно предсердие и один желудочек), следовательно, имеется только один круг кровообращения. Через сердце проходит венозная кровь, которая затем направляется в жабры. Оттуда уже артериальная кровь через выносящие жаберные артерии попадает в спинную аорту и по отходящим от нее сосудам разносится по тканям. Отдав кислород, кровь по венам собирается в предсердие.

Таким образом, приносящие жаберные артерии доставляют венозную кровь от сердца, а выносящие жаберные артерии с артериальной кровью объединяются в спинную аорту.

Сердце у рыб сокращается редко и слабо. Так у речного окуня происходит 20 сокращений в минуту. Следовательно, у рыб достаточно медленный обмен веществ. Рыбы холоднокровны (температура их тела зависит от температуры окружающей среды).

Выделительная система

Выделительная система рыб представлена двумя туловищными почками, которые имеют лентовидную форму.

У большинства костных рыб конечным веществом распада белков является аммиак. Он ядовит и для вывода его из организма требуется много воды.

Моча из почек через мочеточники поступает в мочевой пузырь, откуда выходит через самостоятельное отверстие. Частично продукты распада у рыб удаляются через жабры в процессе дыхания.

Размножение костных рыб

Подавляющее большинство рыб раздельнополы. Однако в качестве исключения имеются гермафродитные виды, у которых половые железы попеременно выполняют функции то семенников, то яичников. А вот у морского окуня разные части половых желез одновременно образуют сперматозоиды и яйцеклетки.

Размножение только половое. У костных рыб оплодотворение почти всегда наружное.

Для рыб характерна большая плодовитость, так как при внешнем оплодотворении много икры не оплодотворяется. Кроме того гибнет много мальков. У рыб, проявляющих заботу о потомстве, плодовитость ниже.

Некоторые виды (лососевые и др.) размножаются один раз в жизни, после чего погибают.

Индивидуальное развитие происходит с неполным превращением. Личинки рыб называются мальками.

Оптические свойства водной среды таковы, что не позволяют видеть находящиеся в ней предметы на больших расстояниях. Соответственно этому обстоятельству устроен и рыбий глаз. Он приспособлен хорошо видеть в воде лишь те предметы, которые находятся от него не далее 1-1,5 м. Таким образом, по природе своей рыбы близоруки.

Однако их близорукость в известной степени компенсируется возможностью видеть в нескольких направлениях одновременно но, причем в обширной зоне. Большинство наших рыб способно, не поворачивая головы, видеть каждым глазом предметы в секторах до 150? по вертикали и до 170? - по горизонтали.

Такую обзорность в воде обеспечивают и строение глаз, и их размещение. Глаза рыбы не имеют век и никогда не закрываются. Снабжены круглыми хрусталиками, воспринимающими наибольшее количество световых лучей с разных направлений.

Расположены глаза на голове рыбы в виде небольших возвышений (выпуклостей) над поверхностью тела, что позволяет воспринимать не только прямые, но и косые лучи (спереди, сзади, снизу, сверху и т. д.).

Когда рыба хочет тщательнее рассмотреть предмет, она вынуждена развернуться так, чтобы этот предмет оказался у нее впереди. Дело в том, что прямо впереди рыбы есть узкое конусообразное пространство, в котором она видит сразу двумя глазами.

Несколько иначе видит рыба предметы, находящиеся над водой. По закону преломления световых лучей она в состоянии воспринять только те предметы, которые находятся над ее головой в пределах конуса в 97?. Так что рыболова, сидящего в лодке или удящего в забродку, особенно если поверхность водоема неспокойна, рыба видеть издали не может.

Опыты ученых-ихтиологов показали, что рыба хорошо различает цвет и даже форму предметов. Именно этой способностью объясняется, почему при ловле спиннингом она явно предпочитает один вид блесен другому. Подтверждается умение рыбы различать цвета и тем, что она может изменять окраску в зависимости от цвета грунта (мимикрия). Так, окунь и плотва, обитающие на светлом песчаном дне, имеют более светлую окраску, чем те, которые держатся на торфяном дне. Окунь, выловленный в густых зарослях травы, всегда имеет более темную окраску, чем тот, что выловлен на каменистом перекате.

Наукой доказано также, что у разных пород рыб различна острота зрения. Например, у хищников, вынужденных выслеживать и преследовать свою добычу, зрение лучше: в прозрачной воде они могут видеть предмет на расстоянии 10-12 метров. У типично стайных рыб оно довольно слабое, менее развита у них и способность различать цвет.

В мутной воде и при слабой освещенности большинство рыб видят хуже, но некоторым (лещ, судак, сом и налим) темнота не является большой помехой: в сетчатке их глаз есть особые светочувствительные элементы, способные воспринимать слабые световые лучи.

Глаз — совершенный оптический прибор. Он напоминает фотографический аппарат. Хрусталик глаза подобен объективу, а сетчатка — пленке, на которой получается изображение. У наземных животных хрусталик чечевицеоб-разный и может изменять свою кривизну, что дает возможность приспосабливать зрение к расстоянию. У рыб хрусталик глаза более выпуклый, почти шарообразный, и не может менять форму. И все же в какой-то степени рыбы приспосабливают зрение к расстоянию. Они достигают этого посредством приближения или удаления хрусталика от сетчатки с помощью особых мышц.

В прозрачной воде рыба практически может видеть не далее чем на 10—12 м, обычно же четко различает предметы в пределах 1,5 м.

Рыбы обладают большим углом зрения. Не поворачивая тела, они могут видеть предметы каждым глазом по вертикали в зоне около 150° и по горизонтали до 170° (рис. 87). Объясняется это расположением глаз по обеим сторонам головы и положением хрусталика, сдвинутого к самой роговице.

Совершенно необычным должен казаться рыбе надводный мир. Без искажения рыба видит лишь предметы, находящиеся прямо над ее головой — в зените. Например, облако или парящую чайку. Но чем меньше угол входа светового луча в воду и чем ниже расположен надводный предмет, тем более искаженным кажется он рыбе.

Рыбы отлично различают цвета и даже их оттенки.

Попробуйте опустить в аквариум несколько разноцветных чашечек, но корм положите только в одну из них. Продолжайте ежедневно давать корм в чашечке одного и того же цвета. Вскоре рыбы станут устремляться к чашечке только того цвета, в которой вы обычно давали им пищу; они найдут чашечку даже в том случае, если вы поставите ее в другое место.

Или другой опыт: одну сторону аквариума закрывают картоном, оставляя посередине узкую вертикальную щель. У противоположной стороны его помещают белую палочку, а в щель пропускают лучи, окрашивающие палочку в тот или иной цвет. Корм рыбам дают при определенном цвете. Через некоторое время рыбы начинают собираться к палочке, как только она окрашивается в «пищевой» цвет. Эти опыты показали, что рыбы воспринимают не только цвет, но и отдельные его оттенки не хуже человека. Караси, например, различают лимонный, желтый и оранжевый. То, что рыбы обладают цветовым зрением, подтверждается и их защитной и брачной окраской — ведь иначе она была бы просто бесполезной. Рыболовы-спортсмены хорошо знают, что для успешной ловли имеет важное значение цвет применяемых блесен.

Способность различать цвета у различных рыб неодинакова. Лучше всего различают цвета рыбы, обитающие в верхних слоях воды, где много света. Хуже те, которые живут на глубине, куда проникает только часть световых лучей.

Рыбы по-разному относятся к искусственному свету. Одних он привлекает, других отпугивает.

Почему рыбы идут на свет, окончательно не установлено. Согласно одной теории, в море, в местах, лучше освещенных солнцем, рыбы находят больше пищи. Здесь бурно развивается растительный планктон, скапливается множество мелких ракообразных. И у рыб выработалась положительная реакция на свет, который стал для них сигналом «пищи». Эта теория не объясняет, почему же устремляются на свет рыбы, поедающие моллюсков. Не объясняет она также, почему рыбы, попав в освещенную зону и не найдя нищи, задерживаются в ней, а не уплывают сразу.

По другой теории, рыб влечет к свету «любопытство». Согласно учению И. П. Павлова, животным свойствен рефлекс — «Что такое?». Электрический свет необычен под водой, и, заметив его, рыбы подплывают ближе. В дальнейшем вблизи источника света у различных рыб в зависимости от образа их жизни возникают самые разнообразные рефлексы. Если возникает оборонительный рефлекс, — рыбы немедленно уплывают, если же стайный или пищевой, — рыбы надолго задерживаются на освещенном участке.

(http://www.urhu.ru/fishing/ryby)

К органам чувств рыбы относятся: зрение, слух, боковая линия, электрорецепция, обоняние, вкус и осязание. Разберем каждое по отдельности.

Орган зрения

Зрение – один из основных органов чувств у рыб. Глаз состоит из округлой формы хрусталика, имеющего твердую структуру. Находится вблизи роговицы и позволяет видеть на расстояние до 5м в состоянии покоя, максимальное зрение достигает 10-14м.

Хрусталик улавливает множество световых лучей, позволяя видеть в нескольких направлениях. Часто глаз имеет возвышенное положение, таким образом, в него попадают прямые лучи света, косые, а также сверху, снизу, с боков. Это значительно расширяет поле зрения рыб: в вертикальной плоскости до 150°, а в горизонтальной – до 170°.

Зрение монокулярное – правый и левый глаз получает отдельное изображение. Глаз состоит из трех оболочек: склера (ограждает от механических повреждений), сосудистой (поставляет питательные вещества), и ретинальной (обеспечивает световосприятие и цветоощущение за счет системы палочек и колбочек).

Орган слуха

Слуховой аппарат (внутреннее ухо или лабиринт) расположен в задней части черепной коробки, включает два отделения: верхний овальный и круглый нижний мешочки . В овальном мешочке расположены три полукружных канала – это орган равновесия, внутри лабиринта течет эндолимфа, с помощью выводного протока соединяется у хрящевых рыб с окружающей средой, у костных — заканчивается слепо.


Орган слуха у рыб совмещен с органом равновесия

Внутреннее ухо делится на три камеры, в каждой находится отолит (часть вестибулярного аппарата, который реагирует на механическое раздражение). Внутри уха заканчивается слуховой нерв, образуя волосковые клетки (рецепторы), при изменении положения тела раздражаются эндолимфой полукружных каналов и помогают сохранять равновесие.

Восприятие звуков осуществляется за счет нижней части лабиринта – круглого мешочка. Рыбы способны улавливать звуки в диапазоне 5Гц – 15кГц. К слуховому аппарату относятся боковая линия (позволяет услышать низкочастотные звуки) и плавательный пузырь (выступает как резонатор, соединён с внутренним ухом посредством Веберового аппарата , состоящего из 4 косточек).

Рыбы близорукие животные , передвигаются часто в мутной воде, с плохим освещением, некоторые особи обитают в морских глубинах, куда свет не достает вовсе. Какие же органы чувств и как позволяют ориентироваться в воде при таких условиях?

Боковая линия

Прежде всего – это боковая линия – основной орган чувств у рыб. Представляет собой канал, который идет под кожей вдоль всего тела, в области головы разветвляется, образуя сложную сеть. Имеет отверстия, через которые связывается с окружающей средой. Внутри расположены чувствительные почки (рецепторные клетки), которые воспринимают малейшие изменения вокруг.

Так они могут определять направление течения, ориентироваться на местности ночью, ощущать движение других рыб, как в стае, так и приближающихся к ним хищников. Боковая линия оснащена механорецепторами, они помогают водным жителям уворачиваться от подводных камней, инородных предметов, даже при плохой видимости.

Боковая линия может быть полной (располагается от головы до хвостовой части), неполной, а может быть вовсе заменена на другие развитые нервные окончания . При травмировании боковой линии рыба уже не сможет долго существовать, что свидетельствует о важности данного органа.


Боковая линия рыб — главный орган ориентации

Электрорецепция

Электрорецепция – орган чувств хрящевых рыб и некоторых костистых (электрический сом). Акулы и скаты ощущают электрические поля с помощью ампул Лоренцини – небольшие капсулы заполненные слизистым содержимым и выстланы специфическими чувствительными клетками, находятся в области головы и сообщаются с поверхностью кожи при помощи тонкой трубки.

Очень восприимчивы и способны ощущать слабые электрические поля (реакция возникает при напряжении в 0,001 мКв/м).

Так электрочувствительные рыбы могут выследить жертву, скрытую в песке, благодаря электрическим полям, которые создаются при сокращении мышечных волокон во время дыхания.

Боковая линия и электрочувствительность – это органы чувств характерны только для рыб!

Орган обоняния

Обоняние осуществляется при помощи ресничек, расположенных на поверхности специальных мешочков. Когда рыба чует запах, мешочки начинают двигаться: сужаться и расширятся, улавливая пахучие вещества. Нос включает 4 ноздри, высланные множеством чувствительных клеток.

Своим нюхом легко находят пищу, сородичей, партнера на период нереста. Некоторые особи способны подавать сигналы об опасности выделяя вещества, к которым чувствительны другие рыбы. Считают, что обоняние для водных жителей важнее зрения.


Органы вкуса

Вкусовые рецепторы рыб сосредоточены в ротовой полости (ротовые почки), и ротоглотке. У отдельных видов (сом, налим) встречаются в области губ и усов, у сазанов — по всему телу.

Рыбы способны распознавать, как и человек, все вкусовые характеристики: соленое, сладкое, кислое, горькое. С помощью чувствительных рецепторов рыба может отыскать необходимую пищу.

Осязание

Рецепторы осязания расположены у хрящевых рыб на участках тела не покрытых чешуей (брюшная область у скатов). У костистых чувствительные клетки разбросаны по всему телу, основная масса сосредоточена на плавниках, губах — дают возможность ощущать прикосновения.

Особенности органов чувств у костистых и хрящевых

Косные рыбы имеют плавательный пузырь, который воспринимает более широкий диапазон звуков, у хрящевых он отсутствует, также у них идет не полное разделение внутреннего уха на овальный и круглый мешочки.

Цветное зрение свойственно костистым, поскольку в их сетчатке находятся и палочки, и колбочки. Зрительный орган чувств хрящевых включает лишь палочки, которые не способны различать цвета.

У акул очень острый нюх, намного больше развита передняя часть мозга (обеспечивает обоняние), чем у других представителей.

Электрические органы – особые органы хрящевых рыб (скатов). Используются для защиты, нападения на жертву, при этом генерируются разряды мощностью до 600В. Могут выступать в качестве органа чувств – образуя электрическое поле, скаты улавливают изменения при попадании в него посторонних тел.