Анаэробная энергия при мышечной деятельности. Оценка физической работоспособности


Аэробные и анаэробные нагрузки – что это такое? В чем их различия? На этот вопрос сможет ответить не каждый, особенно, если далек от спорта. Также можно запутаться в этих терминах. Постараемся разобраться.

Спорт с каждым годом все больше наращивает обороты своей популярности. Сегодня заниматься спортом – это модно. Но, стоит согласиться, что такая мода отлично сказывается на внешнем виде спортсмена, состоянии здоровья и самооценке. Конечно, если заниматься правильно.

Существует два типа нагрузок, которые имеют свои особенности

  1. Аэробная (кардионагрузка) понимается как комплекс упражнений, направленных преимущественно на укрепление сердечно-сосудистой системы и похудение.
  2. Анаэробная (силовая) нагрузка – это тренировки, цель которых заключается в развитии мускулатуры и наборе мышечной массы. Верно ли такое понимание? Как должны строиться занятия спортом, чтобы добиться нужного эффекта? Попробуем узнать как можно больше об этих видах нагрузок.

Аэробные нагрузки

Что такое аэробные нагрузки

Аэробные нагрузки – это такие виды упражнений, в которых источником энергии является кислород. Они, прежде всего, направлены на активное обогащение организма кислородом и укрепление всех его систем. Такие виды нагрузок стали популярными еще в 70-х годах прошлого столетия благодаря Сильвестру Сталлоне и Арнольду Шварцнеггеру. Ученые смогли выяснить, что аэробные занятия спортом способствуют жиросжиганию, похудению и контролю над уровнем подкожно-жировой клетчатки. Если сказать обобщенно, то такой тип нагрузок размеренный и продолжительный.

  • различные виды аэробики;
  • езда на велосипеде;
  • катание на лыжах;
  • занятия на беговой дорожке, велотренажере, эллипсоиде и степпере;
  • катание на коньках и роликовых коньках;
  • спортивная ходьба;
  • бег в размеренном темпе;
  • танцы.

Как видно, выбор достаточно широк и каждый сможет подобрать что-то нескучное для себя. Можно даже комбинировать виды аэробных нагрузок, чтобы разнообразить занятия спортом.

Польза аэробных упражнений:

  • повышают выносливость организма;
  • значительно снижают риск возникновения болезней сердца и патологий сосудов;
  • помогают очищаться организму от шлаков, а коже – от загрязнений;
  • предотвращают развитие сахарного диабета;
  • повышают плотность костной ткани, что делает их более крепкими;
  • снижают риск возникновения и развития раковых клеток;
  • способствуют улучшению эмоционального фона, позволяют эффективно бороться со стрессами;
  • являются отличной профилактикой возникновения расстройств сна;
  • помогают как можно дольше сохранять молодость, бодрость и хорошее самочувствие.

При аэробных нагрузках очень хорошо расходуются калории, за счет чего происходит активное сжигание жировых запасов . Однако, очень важное место отводится правильному режиму и составу питания, без чего не достичь нужного результата. Чтобы понять, как необходимо питаться, следует знать, какие процессы происходят в организме при аэробных нагрузках.

Приблизительно в течение первых 20-30 минут сжигается гликоген, который был получен за день. И только после этого начинается сжигание белков и жиров. Если тренировка длится минут 40-50, то спортивное занятие проходит не зря и процесс жиросжигания продолжается еще в течение 2-х часов после его окончания. Вот как раз в этом случае нужно знать особенности пищевого поведения. Если, предположим, в течение этих 2-х часов съесть банан или выпить сок, то должного эффекта не будет. Процесс расщепления жира попросту остановится.

Также следует учесть, что вместе с накопленными жировыми запасами расщепляются и белки – основной строительный материал мышц . А уж этого точно допустить нельзя. Отличный выход в таком случае: пить только чистую негазированную воду и есть белковую пищу. Так мышцы получат необходимую для них подпитку, и при этом процесс жиросжигания будет успешно продолжаться.


Есть еще один важный нюанс . Да, при аэробных тренировках расходуется большое количество энергии и, соответственно, калорий. Однако, организм достаточно быстро привыкает к уровню нагрузок, из-за чего вскоре их будет недостаточно для достижения нужного эффекта . Именно поэтому специалисты советуют аэробные занятия совмещать с анаэробными. Также нежелательно, что аэробные нагрузки продолжались дольше 1 часа, так как уже начинают происходить гормональные изменения. Это опасно для состояния сердца и сосудов, а также провоцирует снижение иммунитета.

Особенности анаэробных нагрузок

Основная особенность анаэробных «бескислородных» нагрузок – это высокая интенсивность, кратковременность, максимальное напряжение . Во время таких упражнений организм практически не получает кислород, в результате чего растрачивается большое количество энергии, изъятой из мышц. Упражнения выполняются в очень быстром темпе короткими подходами.

Работая со спортивным снарядом, необходимо выполнение нескольких подходов в интенсивных нагрузках, которые чередуются с кратковременными перерывами . Например, занимаясь с гантелями, необходимо поочередно каждой рукой в очень быстром темпе поднимать снаряд (приблизительно в течение минуты). Затем нужно время для отдыха. Количество повторений прямо пропорционально уровню физической подготовки спортсмена. Главное правило: упражнения нужно делать в быстром темпе, не уменьшая скорость и не останавливаясь . Буквально 5-7 подходов – и энергия, припасенная в мышцах, активно растрачивается.


С помощью регулярных и правильных анаэробных тренировок можно добиться следующих результатов:

  • Развитие выносливости, достижение высоких показателей силы.
  • Физиологически ускоряют процесс похудения за счет большого количества затрачиваемых на выполнение нагрузки килокалорий. Благодаря усилению метаболизма лишний жир трансформируется в материал, который направляется на развитие мышц.
  • Укрепление и рост мышц. Набор мышечной массы возможен только в том случае, если совместить анаэробные нагрузки со специальным питанием. Девушкам не стоит бояться, что они сильно накачают мышцы. Из-за низкого уровня тестостерона это невозможно. Кстати, факт: чем лучше развита мышечная мускулатура и чем большую массу она имеет, тем больше будет расходоваться энергия на их функционирование даже не в условиях тренировки.
  • Тело приобретает красивые рельефы, формы становятся более привлекательные.
  • Укрепление опорно-двигательного аппарата, исправление осанки.
  • Повышение иммунитета.
  • Анаэробные тренировки – это хорошая профилактика сахарного диабета.
  • Улучшается общее самочувствие.
  • Человек, тренирующийся регулярно, ощущает себя бодрым, активным и сильным. Повышается самооценка.
  • Риск получения травм в повседневной жизни резко сокращается.

Удивительно, что эффект от анаэробной тренировки сохраняется еще в течение 36 часов. В это время в организме продолжают происходить интенсивные метаболические процессы.

Анаэробный гликолиз

Анаэробные нагрузки – это силовые упражнения, в процессе выполнения которых кислород не участвует. Выработка энергии происходит за счет непосредственно того запаса, который содержится в мышцах . Этого запаса хватит на нагрузку в течение 8-12 секунд. По прошествии этого времени организм «включает» процесс потребления кислорода, отчего анаэробное упражнение становится аэробным.

В анаэробных нагрузках существует понятие «анаэробный гликолиз», на котором базируется весь эффект таких тренировок.

Для того, чтобы человек выполнял физическую деятельность, организму нужна энергия. Ее источник – молекула АТФ (аденозинтрифосфат). В незначительных количествах она находится в мышцах. Во время анаэробных нагрузок в условиях отсутствия кислорода происходит распад глюкозы до молочной кислоты.

Анаэробный порог

Анаэробный порог (АнП) – одно из центральных понятий в тех видах спорта, которые предполагают интенсивный упор на выносливость . Также его называют порогом анаэробного обмена. Он представляет собой порог интенсивности выполнения определенного упражнения, в процессе которого количество лактата (молочной кислоты) превышает его нейтрализацию в крови.

Существуют разные методы его измерения. Пусть не наиболее точный, но доступный метод – это измерение ЧСС (частоты сердечных сокращений) на длинных соревновательных дистанциях . Гораздо точнее АнП можно измерить в лабораторных условиях. Анаэробный порог является определяющим в выборе степени нагрузки, упражнений, режима работы на тренировках и пр.

При интенсивных физических нагрузках мышцы выделяют молочную кислоту. Чем больше трудится мышца, тем больше лактата она выделяет . Организм старается как можно быстрее избавиться от этого продукта. Если он не будет успевать утилизировать молочную кислоту, это скажется на самочувствии спортсмена и его производительности. Для того, чтобы этого не произошло, нужно не превышать АнП.

Если подытожить, то порог анаэробного обмена – это граница, на которой достигается уравновешенный баланс между той скоростью, с которой выделяется лактат и той скоростью, с которой она утилизируется.

Аэробное и анаэробное дыхание

Цель дыхательной системы заключается в том, чтобы вырабатывать специальные молекулы, называемые накопителями энергии . При выполнении физических нагрузок им отводится важная роль.

Существует два вида дыхания, которые могут применяться при спортивных тренировках – аэробное и анаэробное.

При аэробных упражнениях используется кислород в качестве важного элемента, позволяющего интенсивно растрачивать энергию. Этот газ необходим для процесса окисления углеводов и липидов. Легкие активно участвуют в дыхании, что позволяет насытить организм большим количеством кислорода. Методика аэробного дыхания широко применяется для уменьшения массы тела, укрепления легких.

В методике анаэробного дыхания подключается совсем иная система, для работы которой не нужен кислород извне . Роль окислителя возлагается на кислород неорганических веществ (нитраты, сульфаты и пр.). Такой вид дыхания еще можно назвать клеточным. Для его организации потребуется больше времени, так как клеточное дыхание – более медленный процесс.

Чтобы активизировать анаэробное дыхание, силовые тренировки выполняются быстро и кратковременными подходами.

Кардионагрузка

Кардионагрузка – это физическая активность, которая приводит к учащению пульса и увеличению показателя частоты сердечных сокращений . Основная польза такой нагрузки в том, что она способствует укреплению сердечной мышцы и стабилизации ее работы.

Как работает кардионагрузка и в чем заключается ее благотворный эффект?

Все легко объяснимо с физиологической точки зрения. От состояния работы сердца зависит общее самочувствие человека. Если есть какие-то проблемы в работе этого органа, то это непременно скажется на ухудшении здоровья.

При кардионагрузке, сопровождаемой учащением пульса, происходит оздоровление всего организма. Однако, нельзя нагружать сердце слишком интенсивно . Основной ориентир в таких тренировках – это индивидуальное состояние здоровья. Каждому требуется разная программа . В противном случае, если организм получит слишком высокую для себя нагрузку, это может окончиться серьезными последствиями.

Выбирая уровень кардионагрузки, стоит в первую очередь обратить внимание на тренированность, так как пульс в процессе выполнения упражнения может учащаться как незначительно, так и экстремально. Человек, который регулярно занимается спортом, хорошо переносит постепенное увеличение нагрузки. А вот пожилым людям и тем, у кого слабое здоровье, лучше отдавать предпочтение легким упражнениям.

Есть разные вида кардионагрузок и во многом они пересекаются с аэробными, то есть, все теми же аэробными нагрузками:

  • Ходьба . Этот вид кардионагрузки – отличная тренировка для новичков в спорте, так как лучше начинать именно с неинтенсивной ходьбы . Постепенно можно наращивать темп, делая его очень ускоренным. Быстрой ходьбой можно считать ходьбу со скоростью более 110 шагов в минуту. Тому, кто спортивно не подготовлен, будет очень тяжело и опасно сразу начинать с такого темпа. Если же некоторый опыт есть, можно пробовать чередовать 5 минут ходьбы в легком темпе с 5 минутами ускоренной ходьбы. Постепенно, с каждой тренировкой увеличивая темп, нужно дойти до быстрой ходьбы. Она должна быть такой, словно человек куда-то сильно опаздывает.
  • Бег – еще один очень популярный вид кардионагрузки. Из-за того, что во время бега нагружается большинство мышц, для таких тренировок может быть ряд ограничений . Например, если имеются болезни суставов или позвоночника, серьезные проблемы с сердцем, то лучше проконсультироваться с врачом. Возможно, доктор даст рекомендации, которые помогут не отказываться полностью от занятий бегом.
  • Танцы . Да, их также можно смело отнести к кардионагрузкам. Эффект от них достигается такой же, как и после обычной тренировки в спортивном зале . Во время танцев происходит интенсивное учащение пульса, что полезно для сердца, мышц и всего организма. Помимо того, что тело становится стройным и подтянутым, человек, занимающийся танцами, приобретает пластичность, грациозность, изящество.
  • Велопрогулки . Они помогают укрепить сердце, разные группы мышц (в особенности, ног), похудеть . Отличная альтернатива таким нагрузкам – тренировки на велотренажере в спортивном зале или дома.

Кардионагрузки являются прекрасным способом улучшить состояние здоровья, стать значительно стройнее и подтянутее. Однако, для того, чтобы был должный эффект, необходимо заниматься регулярно, 4-5 раз в неделю.


Сочетание аэробных и анаэробных нагрузок

В чистом виде аэробных и анаэробных нагрузок практически не существует. Очень тяжело отделить одно от другого, так как анаэробное упражнение буквально через 10-15 секунд выполнения становится аэробным.

Чтобы добиться максимального эффекта в похудении, укреплении мышц и сердечно-сосудистой системы, лучше тренироваться комплексно – делать упражнения и анаэробные, и аэробные (если нет никаких противопоказаний) . Сочетать их можно по-разному, но необходимо придерживаться основных принципов.

Возможно несколько вариантов:

В первом случае тренировки позволяют усилить общий оздоровительный эффект, избавиться от лишних килограммов . К аэробным упражнениям, которые преимущественное большинство, добавляются силовые упражнения.

Вариантов программ такой тренировки есть несколько. Наиболее распространенный – это 30-40 минут аэробных упражнений, которые сменяются силовыми, выполняемыми в течение 15-20 минут. Однако, такой подход не только неэффективный, но может быть и опасным для мышц. Самый оптимальный вариант – это аэробные и анаэробные тренировки, которые выполняются отдельно друг от друга в разные дни . Это позволяет не перегружать мышцы и достичь нужного эффекта.

Также есть понятие комплексных тренировок, в которых упор делается на анаэробные упражнения. В их пределах также есть несколько вариантов:

Линкануть

Вотсапнуть

С энергетической точки зрения, все скоростно-силовые упражнения относятся к анаэробным. Предельная продолжительность их - менее 1-2 мин. Для энергетической характеристики этих упражнений используется два основных показателя: максимальная анаэробная мощность и максимальная анаэробная емкость (способность). Максимальная анаэробная мощность. Максимальная для данного человека мощность работы может поддерживаться лишь несколько секунд. Работа такой мощности выполняется почти исключительно за счет энергии анаэробного расщепления мышечных фосфагенов - АТФ и КрФ. Поэтому запасы этих веществ и особенно скорость их энергетической утилизации определяют максимальную анаэробную мощность. Короткий спринт и прыжки являются упражнениями, результаты которых зависят от максимальной анаэробной мощности,

Для оценки максимальной анаэробной мощности часто используется тест Маргарин. Он выполняется следующим образом. Испытуемый стоит на расстоянии 6 м перед лестницей и вбегает по ней, как только можно быстрее. На 3-й ступеньке он наступает на включатель секундомера, а на 9-й - на выключатель. Таким образом, регистрируется время прохождения расстояния между этими ступеньками. Для определения мощности необходимо знать выполненную работу - произведение массы (веса) тела испытуемого (кг) на высоту (дистанцию) между 3-й и 9-й ступеньками (м)-и время преодоления этого расстояния (с). Например, если высота одной ступеньки равна 0,15 м, то общая высота (дистанция) будет равна 6 * 0,15 м =0,9 м.При весе испытуемого 70 кг и времени преодоления дистанции 0,5 с. мощность составит (70 кг*0,9 м)/0,5с = 126 кгм/а.

В табл. 1 приводятся "нормативные" показатели максимальной анаэробной мощности для женщин, и мужчин.

Таблица 1 Классификация показателей максимальной анаэробной мощности (кгм/с, 1 кгм/с = 9,8 Вт.)

Классификация

Возраст, лет

посредственная

отличная

посредственная

отличная

Максимальная анаэробная емкость. Наиболее широко для оценки максимальной анаэробной, емкости используется величина максимального кислородного долга - наибольшего кислородного долга, который выявляется после работы предельной продолжительности (от 1 до 3 мин). Это объясняется тем, что наибольшая часть избыточного количества кислорода, потребляемого после работы, используется для восстановления запасов АХФ, КрФ и гликогена, которые расходовались в анаэробных процессах за время работы. Такие факторы, как высокий уровень катехоламинов в крови, повышенная температура тела и увеличенное потребление О 2 часто сокращающимся сердцем и дыхательными мышцами, также могут быть причиной повышенной скорости потребления О 2 во время восстановления после тяжелой работы. Поэтому имеется лишь весьма умеренная связь между величиной максимального долга и максимальной анаэробной емкостью.

В среднем величины максимального кислородного долга у спортсменов выше, чем у неспортсменов, и составляют у мужчин 10,5 л (140 мл/кг веса тела), а у женщин-5,9 л (95 мл/кг веса тела). У неспортсменов они равны (соответственно) 5 л (68 мл/кг веса тела) и 3,1 л (50 мл/кг веса тела). У выдающихся представителей скоростно-силовых видов спорта (бегунов на 400 и 800 м) максимальный кислородный долг может достигать 20 л (Н. И. Волков). Величина кислородного долга очень вариативна и не может быть использована для точного предсказания результата.

По величине алактацидной (быстрой) фракции кислородного долга можно судить о той части анаэробной (фосфагенной) емкости, которая обеспечивает очень кратковременные упражнения скоростно-силового характера (спринт).

Простое определение емкости алактацидного кислородного долга состоит в вычислении величины кислородного долга за первые 2 мин восстановительного периода. Из этой величины можно выделить "фосфагенную фракцию" алактацидного долга, вычитая из алактацидного- кислородного долга количество кислорода, используемого для восстановления запасов кислорода, связанного с миоглобином и находящегося в тканевых жидкостях: емкость "фосфагенного"

(АТФ + КФ) кислородного долга (кал/кг веса.тела) = [ (О 2 -долг 2мин - 550) * 0,6 * 5 ] / вес тела (кг)

Первый член этого уравнения - кислородный долг (мл), измеренный в течение первых 2 мин восстановления после работы предельной продолжительности 2- 3 мин; 550 - это приблизительная величина кислородного долга за 2 мин, который идет на восстановление кислородных запасов миоглобина и.тканевых жидкостей;г 0,6 - эффективность оплаты алактацидного кислородного долга; 5 - калорический эквивалент 1 мл О 2 .

Типичная максимальная величина "фосфагенной фракции" кислородного долга - около 100 кал/кг веса тела, или 1,5-2 л О2-В результате тренировки скоростно-силового характера она может увеличиваться в 1,5-2 раза.

Наибольшая (медленная) фракция кислородного долга после работы предельной продолжительности в несколько десятков секунд связана с анаэробным гликолизом, т.е. с образованием в процессе выполнения скоростно-силового упражнения молочной кислоты, и потому обозначается как лактацидный кислородный долг. Эта часть кислородного долга используется для устранения молочной кислоты из организма путем ее окисления до СО2 и Н2О и ресинтеза до гликогена.

Для определения максимальной емкости анаэробного гликолиза можно использовать расчеты образования молочной кислоты в процессе мышечной работы. Простое уравнение для оценки энергии, образующейся за счет анаэробного гликолиза, имеет вид: энергия анаэробного гликолиза (кал/кг веса тела) = содержанию молочной кислоты в крови (г/л) * 0,76 * 222, где содержание молочной кислоты определяется как разница между наибольшей концентрацией ее на 4-5-й мин после работы (пик содержания молочной кислоты в крови) и концентрацией в условиях покоя; величина 0,76 - это константа, используемая для коррекции уровня молочной кислоты в крови до уровня ее содержания во всех жидкостях; 222 - калорический эквивалент 1 г продукции молочной кислоты.

Максимальная емкость лактацидного компонента анаэробной энергии у молодых нетренированных мужчин составляет около 200 кал/кг веса тела, что соответствует максимальной концентрации молочной кислоты в крови около 120 мг% (13 ммоль/л). У выдающихся представителей скоростно-силовых видов спорта максимальная концентрация молочной кислоты в крови может достигать 250-300 мг%, что соответствует максимальной лактацидной (гликолитической) емкости 400-500 кал/кг веса тела.

Такая высокая лактацидная емкость обусловлена рядом причин. Прежде всего, спортсмены способны развивать более высокую мощность работы и поддерживать ее более продолжительно, чем нетренированные люди. Это, в частности, обеспечивается включением в работу большой мышечной массы (рекрутированием), в том числе быстрых мышечных волокон, для которых характерна высокая гликолитическая способность. Повышенное содержание таких волокон в мышцах высококвалифицированных спортсменов - представителей скоростно-силовых видов спорта - является одним из факторов, обеспечивающих высокую гликолитическую мощность и емкость. Кроме того, в процессе тренировочных занятий, особенно с применением повторно-интервальных упражнений анаэробной мощности, по-видимому, развиваются механизмы, которые позволяют спортсменам "переносить" ("терпеть") более высокую концентрацию молочной кислоты (и соответственно более низкие значения рН) в крови и других жидкостях тела, поддерживая высокую спортивную работоспособность. Особенно это характерно для бегунов на средние дистанции.

Силовые и скоростно-силовые тренировки вызывают определенные биохимические изменения в тренируемых мышцах. Хотя содержание АТФ и КрФ в них несколько выше, чем в нетренируемых (на 20-30%), оно не имеет большого энергетического значения. Более существенно повышение активности ферментов, определяющих скорость оборота (расщепления и ресинтеза) фосфагенов (АТФ, АДФ, АМФ, КрФ), в частности миокиназы и креатин" фосфокиназы (Яковлев Н. Н.).

Максимальное потребление кислорода. Аэробные возможности человека определяются, прежде всего, максимальной для него скоростью потребления кислорода. Чем выше МПК, тем больше абсолютная мощность максимальной аэробной нагрузки. Кроме того, чем выше МПК, тем относительно легче и потому длительнее выполнение аэробной работы.

Например, спортсмены А и Б должны бежать с одинаковой скоростью, которая требует у обоих одинакового потребления кислорода - 4 л/мин. У спортсмена А МПК. равно 5 л/мин и потому дистанционное потребление О 2 составляет 80% от его МПК. У спортсмена Б МПК равно 4,4 л/мин н, следовательно, дистанционное потребление О 2 достигает 90% от его МПК. Соответственно для спортсмена А относительная физиологическая нагрузка при таком беге ниже (работа "легче"), и потому он может поддерживать заданную скорость бега в течение более продолжительного времени, чем спортсмен Б.

Таким образом, чем выше МПК у спортсмена, тем более высокую скорость он может поддерживать на дистанции, тем, следовательно, выше (при прочих равных условиях) его спортивный результат в упражнениях, требующих проявления выносливости. Чем выше МПК, тем больше аэробная работоспособность (выносливость), т.е. тем больший объем работы аэробного Характера способен выполнить человек. Причем эта зависимость выносливости от МПК проявляется (в некоторых пределах) тем больше, чем меньше относительная мощность аэробной нагрузки.

Отсюда понятно, почему в видах спорта, требующих проявления выносливости, МПК у спортсменов выше, чем у представителей других видов спорта, а тем более чем у нетренированных людей того же возраста. Если у нетренированных мужчин 20-30 лет МПК в среднем равно 3-3,5 л/мин (или 45- 50 мл/кг * мин), то у высококвалифицированных бегунов-стайеров и лыжников оно достигает 5-6 л/мин (или более 80 мл/кг * мин). У нетренированных женщин МПК равно в среднем 2-2,5 л/мин (или 35-40 мл/кг * мин), а у лыжниц около 4 л/мин (или более 70 мл/кг * мин).

Абсолютные показатели МПК (л О 2 /мин) находятся в прямой связи с размерами (весом) тела. Поэтому наиболее высокие абсолютные показатели МПК имеют гребцы, пловцы, велосипедисты, конькобежцы. В этих видах спорта наибольшее значение для физиологической оценки данного качества имеют абсолютные показатели МПК.

Относительные показатели МПК (мл О 2 /кг * мин) у высококвалифицированных спортсменов находятся в обратной зависимости от веса тела. При беге и ходьбе выполняется значительная работа по вертикальному перемещению массы тела и, следовательно, при прочих равных условиях (одинаковой скорости передвижения) чем больше вес спортсмена, тем больше совершаемая им работа (потребление О 2). Поэтому бегуны на длинные дистанции, как правило, имеют относительно небольшой вес тела (прежде всего за счет минимального количества жировой ткани и относительно небольшого веса костного скелета). Если у нетренированных мужчин 18-25 лет жировая ткань составляет 15- 17% веса тела, то у выдающихся стайеров - лишь 6- 7% Наибольшие относительные показатели МПК обнаруживаются у бегунов на длинные дистанции и лыжников, наименьшие - у гребцов. В таких видах спорта, как легкоатлетический бег, спортивная ходьба, лыжные гонки, максимальные аэробные возможности спортсмена правильнее оценивать по относительному МПК.

Уровень МПК зависит от максимальных возможностей двух функциональных систем: 1) кислородтранспортной системы, абсорбирующей кислород из окружающего воздуха и транспортирующей его к работающим мышцам и другим активным органам и тканям тела; 2) системы утилизации кислорода, т. е. мышечной системы, экстрагирующей и утилизирующей доставляемый кровью кислород. У спортсменов, имеющих высокие показатели МПК, обе эти системы обладают большими функциональными возможностями.

Работа в бескислородном (анаэробном) режиме обеспечивается энергией за счет процесса гликолиза, распада аденозинтрифосфорной кислоты (АТФ) и креатинфосфата (КРФ). У спортсменов стайеров часто определяют максимальную анаэробную мощность (МАМ). Перед проведением теста у спортсмена определяют вес. Тест выполняется с помощью лестницы, длина которой 5 метров, наклон 30 градусов, общая высота подъема составляет 2,6 метра. По команде тренера спортсмен с максимальной скоростью забегает вверх по лестнице, при этом максимально точно фиксируется время подъема. Затем для уточнения измеряется высота ступеней, считается их число и эти показатели перемножают. Таким получают высоту подъема.

По формуле рассчитывают мощность выполненной работы или максимальную анаэробную мощность
(МАМ):

W = р * h/t (кг м/с),

Где:
W - максимальная анаэробная мощность (МАМ); h - высота подъема (м); t - время подъема (с).

Для пересчета полученного результата в единицы мощности (ватты) его умножают на 9,81, а при умножении на 0,14 полученный результат МАМ будет переведен в ккал/мин. Эта величина характеризует абсолютную мощность механической работы. При КПД=25% расчет общих энерготрат проводят по формуле: W= W * 0,563 ккал/мин.

МАМ может в 6-10 раз превышать критическую мощность работы, при которой достигается максимальное потребление кислорода. Примеры величин МАМ в некоторых видах спорта приведены в таблице 3.14.

Таблица 3.14 Максимальная анаэробная мощность (МАМ), развиваемая спортсменами разной квалификации

Определение аэробно-анаэробного перехода

Помимо МПК важным показателем аэробных возможностей организма является уровень порога анаэробного обмена (ПАНО), который отражает эффективность использования аэробного потенциала. В последние годы все большее распространение получило мнение, что для развития аэробной работоспособности интенсивность нагрузок должна, соответствовать уровню ПАНО. Это положение одинаково важно как для спортивной, так и для оздоровительной тренировки, в процессе которых развивается общая выносливость организма. Известно, что у спортсменов с одинаковыми величинами МПК отмечается широкая вариабельность спортивных результатов.

Это связывают с тем, что в видах спорта на выносливость, особенно в условиях соревнований, результат определяется не столько величиной аэробной мощности, сколько процентом ее использования для поддержания скорости движения (в беге, плавании и т.д.). Чем больше процент использования аэробного потенциала, тем выше результат. В связи с этим для оценки работоспособности спортсмена целесообразно определять индивидуальные соотношения аэробной и анаэробной энергопродукции или порог анаэробного обмена. Преимуществом такого подхода является и то, что на результат определения ПАНО не влияет мотивация обследуемого, отсутствие которой при нагрузочном тестировании часто не позволяет достичь абсолютного уровня МПК (прямое определение МПК).

Концепция аэробно-анаэробного перехода, границы которого определяются ПАНО-1 и ПАНО-2, изложена в работах W.Kindermann et all (1970-1985). ПАНО-1 обозначает верхнюю границу аэробного энергообеспечения и соответствует началу прироста лактата в крови (примерная концентрация 2 ммоль/л) при этом ЧСС достигает в среднем 140-170 уд/мин. ПАНО-2 соответствует началу исключительно анаэробной энергопродукции, отмечается заметное снижение рН крови. В зависимости от пола, возраста и физической подготовленности концентрация лактата крови при этом колеблется в пределах у взрослых 2,6-4,3 ммоль/л, а у детей и подростков в возрасте 10-16 лет равна 3,83,9 ммоль/л. При достижении ПАНО-2 ЧСС колеблется в среднем в пределах 175-200 уд/мин.

Важным аргументом в пользу определения параметров аэробно-анаэробного перехода (особенно по его индивидуальным показателям), как критерия работоспособности является тот факт, что при правильной организации тренировочного процесса ПАНО может увеличиваться на 45%, в то время как прирост абсолютных значений МПК только на 20-30% (Шварц В.Б., Хрущев С.В., 1984. 1991)

ПАНО-1 и ПАНО-2 можно определять как инвазивным методом (по показателям лактата крови), так и косвенным способом. Для косвенного определения ПАНО можно использовать метод, предложенный Conconi F. et all (1989). Он основывается на утрате на уровне ПАНО линейной зависимости между увеличением мощности нагрузки и повышением ЧСС. Тест заключается в пробежке 10-15 отрезков длиною 30-60 метров со ступенчато увеличивающейся скоростью. Тест можно проводить на беговой дорожке стадиона или в лабораторных условиях, используя тредмил (бегущую дорожку), на котором легче равномерно увеличивать скорость движений. При этом фиксируется время бега и ЧСС в конце каждого отрезка. Скорость бега и ЧСС до достижения уровня ПАНО увеличиваются линейно. Точка перелома кривой (для ее определения следует строить график зависимости «скорость-ЧСС») позволяет определить индивидуальный уровень ПАНО.

Упрощенный ориентировочный критерий (для лиц, занимающихся оздоровительной физкультурой) интенсивности нагрузки на уровне ПАНО - появление затруднений в дыхании (выраженная одышка). Оптимальной нагрузкой, соответствующей ПАНО, считается та мощность работы, при которой можно еще поддерживать ритм дыхания 3 шага - вдох, 3 шага - выдох (Суслов Ф., 1989). Момент, когда занимающийся вынужден вдыхать дополнительную порцию воздуха уже через рот, соответствует ЧСС около 150 уд/мин.

Данная информация важна не только для оптимальной дозировки интенсивности нагрузки или дозировки упражнений, но и для достижения необходимого тренировочного эффекта.

Анаэробная мощность

Анаэробная мощность – это максимальная способность двух анаэробных энергетических систем (АТФ + КФ) и гликолиза производить энергию. АТФ и КФ – высоко энергетичные сложные соединения, которые в ограниченном количестве содержатся в мышечных клетках. Они обеспечивают энергию для высокоинтенсивных нагрузок, продолжительность которых не превышает 6 - 8 с. Гликолиз поставляет энергию для интенсивной активности, длящейся 60 - 90 с. В результате анаэробного гликолиза образуются лактам и ионы водорода, по мере их накопления возникает утомление мышц.

Анаэробная мощность необходима для достижения успеха в видах спорта высокой интенсивности и небольшой продолжительности. Несмотря на создание ряда тестов, измерить уровень анаэробной мощности трудно. Чаще всего определяют уровень лактата в крови после изнурительной физической нагрузки, чтобы найти величину выделяемой анаэробной энергии. Наличие лактата свидетельствует о реакции гликолиза, однако количество лактата в крови, по всей видимости, не позволяет точно установить, сколько его было произведено мышцей. Это можно объяснить, исходя из трех вариантов: когда лактат покидает мышцу, некоторое его количество преобразуется; может наблюдаться различная вариабельность объема для разбавления лактата; трудно определить, когда наступило равновесие, и было ли оно вообще.

Другой тест основан на измерении дефицита кислорода после физической нагрузки до возвращения к исходному уровню. Трудность в данном случае состоит в том, что для того, чтобы синтезировать гликоген из лактата, требуется больше энергии, чем для того, чтобы освободить его в процессе преобразования гликогена; некоторое количество лактата окисляется во время физической нагрузки, что не отражается в количестве кислорода, потребляемого после завершения физической нагрузки; кроме того, помимо лактата и другие факторы вызывают повышенное потребление кислорода после изнурительной нагрузки.

Вычисляя дефицит кислорода при кратковременной суб максимальной нагрузке, можно довольно точно оценить анаэробную работу. Что касается максимальной нагрузки небольшой продолжительности (т.е. 1 - 10 мин), показатели дефицита кислорода можно использовать, если есть возможность определить энергетическую стоимость работы. В этом случае необходимо установить затраты энергии, определив механическую эффективность данного вида активности, или же установив взаимосвязь между интенсивностью нагрузки и потреблением кислорода.

Тесты, предусматривающие приложение максимального усилия в течение короткого периода времени (т.е. 0 - 30 с), могут оказаться недостаточно продолжительными, чтобы истощить все запасы анаэробной энергии, особенно производимой в результате гликолиза. В первые несколько секунд интенсивной нагрузки концентрация АТФ снижается на 2 %, а концентрация КФ - на 80 %. Эти алактацидные компоненты обусловливают примерно 25 - 30 % имеющейся анаэробной энергии у нетренированных или тренированных людей. Гликолиз обусловливает 60 % получаемой анаэробным путем энергии у нетренированных людей и 70 % - у тренированных.

Тренировочные занятия, направленные на повышение анаэробной энергетической способности мышц, предусматривают выполнение высокоинтенсивных упражнений продолжительностью 40 - 60 с несколько раз. Это позволяет повысить активность гликолитических ферментов, улучшить буферную способность и выведение лактата из работающих мышц. Тренировки на выносливость, улучшающие аэробную способность (например, улучшение мышечного кровотока и капилляризации, увеличение содержания гемоглобина, миоглобина и окислительных ферментов), способствуют повышению анаэробной способности, улучшая транспорт и окисление лактата.

Аэробная и анаэробная работоспособность организма

Работоспособность организма - это способность совершать работу, требующая затраты (выделения) энергии. Энергия в организме высвобождается в процессе дыхания - окисления органических веществ (белков, жиров и углеводов) кислородом воздуха.

Следовательно, в анаэробных (бескислородных) условиях на фоне снижения уровня кислорода будет наблюдаться уменьшение интенсивности окисления органических веществ и, как следствие, снижение количества выделяемой энергии, а значит и уменьшение работоспособности организма.

В аэробных условиях, наоборот, на фоне возрастания уровня кислорода будет наблюдаться повышение интенсивности окисления органических веществ и, как следствие, увеличение количества выделяемой энергии, а значит и повышение работоспособности организма.

Биохимические основы быстроты (скорости) как качества двигательной деятельности.

Двигательная деятельность обеспечивается с помощью миофибрилл - органелл клетки, отвечающих за сокращение. Основными компонентами миофибриллы являются мышечные нити. Последние бывают 2-х типов: толстые нити имеют диаметр 15 нм и содержат в основном нитевидный белок миозин, а тонкие имеют 7 нм в диаметре и состоят из актина, тропомиозина и тропонина .

Миозин построен из двух больших и четырех малых полипептидных цепей. Каждая большая цепь состоит из двух частей: вытянутого "хвоста", имеющего -спиральную конформацию, и глобулярной "головки". Хвосты обеих больших нитей заплетены друг вокруг друга, образуя сверхскрученную структуру длиной 140 нм. Глобулярная головка каждой большой цепи находится в комплексе с двумя малыми цепями; весь комплекс также является глобулярным. Таким образом, молекула миозина имеет две глобулярные головки и один фибриллярный двухцепочечный хвост.

Актин находится в миофибриллах в форме F-актина (F-фибриллярный). F-актин - это полимер, а мономерные единицы, из которых он построен, называются G-актином (G-глобулярный). По своей структуре F-актин похож на две нитки бус, в которых бусинками служат молекулы G-актина; нитки закручены друг вокруг друга в спиральную структуру с шагом 36-38 нм.

Молекула тропомиозина представляет собой тяж длиной 40 нм, образованный двумя переплетающимися -спиральными полипептидными цепями. Тропомиозин связан с F-актином. Каждая молекула тропомиозина охватывает семь G-актиновых глобул, причем соседние его молекулы немного перекрываются между собой, так что образуется непрерывная тропомиозиновая цепь, идущая вдоль F-актинового волокна. Поскольку F-актин состоит из двух ниток, с ним связаны и две тропомиозиновые цепочки.

Тропонин является комплексом трех белков: тропонина I, тропонина T и тропонина С. Он имеет в целом более или менее глобулярную форму и располагается на F-актине через правильные промежутки, равные примерно 38 нм.

Обеспечение сокращения энергией осуществляет АТФ. Глобулярные головки миозина связывают АТФ и быстро гидролизуют его, но не так легко освобождают продукты гидролиза - АДФ и Фн. F-актин, который связывается с миозином, образуя комплекс, называемый актомиозином, ускоряет отсоединение АДФ и Фн от миозиновых головок. Освободившиеся АТФ-связывающие участки актомиозинового комплекса могут связать новые молекулы АТФ, но, как только это происходит, индуцируется диссоциация актомиозина на актин и миозин. Такой цикл может повторяться многократно - в присутствии достаточного количества АТФ. Описанное взаимодействие актина и миозина лежит в основе молекулярного механизма сокращения.

Процесс сокращения включает в себя цикл наклона головок миозина, состоящий из 4-х стадий :

Миозин в толстых нитях содержит связанные АДФ и Фн, но не связан с актином тонких нитей.

При поступлении сигнала к сокращению глобулярные миозиновые головки со связанными АДФ и Фн прикрепляются к актину (образуется актомиозин).

Образование актомиозина ускоряет освобождение АДФ и Фн, что сопровождается наклоном головок миозина; при наклоне головки происходит скольжение все еще прикрепленной к ней тонкой актиновой нити вдоль толстой, что приводит к укорочению саркомера.

АТФ связывается с миозиновыми головками в актомиозине, и это приводит к отсоединению актина от миозина, после чего гидролиз АТФ миозином возвращает систему к первой фазе цикла.

Регуляция быстроты сокращения опосредуется ионами кальция. При низких концентрациях Са 2+ тропонин и тропомиозин препятствуют взаимодействию актина с миозином . Когда приходит нервный импульс и происходит деполяризация мембраны клеток, внутриклеточный уровень Са 2+ повышается, это вызывает Са 2+ -зависимое изменение конформации тропонина, которое передается тропомиозину, и в результате тропомиозин меняет свое положение на актиновой нити так, что ее связывающие участки становятся доступными для головок миозина.